

Cost-effective heavy-duty bearing Robust and dimensionally stable iglide[®] Q2E

When to use it?

- When a wear-resistant plain bearing at loads up to 18,855psi is required
- When a robust and dirt-resistant plain bearing is required
- When a plain bearing with dimensional stability is required.

When not to use?

- When a plain bearing with the highest possible media resistance is required iglide[®] X
- With high rotational speeds iglide[®] J, iglide[®] L250
- When a universal standard plain bearing for occasional movements is required iglide[®] G

iglide® Q2E

Bearing technology | Plain bearing | iglide® Q2E

Ø 20 - 60mm 3/4 - 2 1/2 in.

Material available as:

round bar Page 761

Bar stock, plate Page 783

tribo-tape liner

Piston rings Page 685

Two hole flange bearings Page 709

Molded special parts Page 721

iqubal[®] spherical balls Page 965

Cost-effective heavy-duty bearing Robust and dimensionally stable

With extreme loads, even high-tech polymers reach their limits. Therefore iglide® Q2E offers a completely new multi-component design and is able to carry extreme loads. In addition, thanks to optimized injection molding technology, it is more cost-effective than comparable fiber composites.

- Self-lubricating
- Wear-resistant up to 18,855psi dynamic load
- Resistant to dirt
- Corrosion-free

Typical application areas

- Agricultural machinery
- Construction machinery industry
- Utility and construction vehicles
- Hoisting technology

Available from stock

Detailed information about delivery time online.

Online ordering Including delivery times, prices, online tools

Descriptive technical specifications		
Wear resistance at +73°F	-	+
Wear resistance at +194°F	-	+
Wear resistance at +302°F	-	+
Low coefficient of friction	-	+
Low moisture absorption	-	+
Wear resistance under water	-	+
High media resistance	-	+
Resistant to edge pressures	-	+
Suitable for shock and impact loads	-	+
Resistant to dirt	-	+

Online product finder

www.igus.com/iglidefinder

Online service life calculation www.igus.com/iglide-expert

Technical data

General properties			Testing method
Density	g/cm ³	1.46 – 1.69	
Color		beige-brown	
lax. moisture absorption at +73°F and 50% r.h.	% weight	1.5	DIN 53495
ax. moisture absorption	% weight	5.0	
pefficient of friction, dynamic, against steel	μ	0.22 – 0.42	
r value, max. (dry)	psi ⋅ fpm	20,000	
lechanical properties			
exural modulus	psi	n.s.	DIN 53457
exural strength at +68°F	psi	34,084	DIN 53452
ompressive strength	psi	n.s.	
ax. recommended surface pressure (+68°F)	psi	19,580	
hore D hardness		80	DIN 53505
hysical and thermal properties			
lax. application temperature long-term	°F	+212	
lax. application temperature short-term	°F	+284	
1in. application temperature	°F	-22	
hermal conductivity	W/m ⋅ K	n.s.	ASTM C 177
coefficient of thermal expansion (at +73°F)	K-¹ · 10-⁵	n.s.	DIN 53752
lectrical properties			
pecific contact resistance	Ωcm	> 1012	DIN IEC 93
Surface resistance	Ω	> 1012	DIN 53482

Table 01: Material properties

The iglide[®] Q2E plain bearings defy dirt at the heaviest loads due to their robust design.

Moisture absorption

Under standard climatic conditions, the moisture absorption of iglide[®] Q2E plain bearings is approximately 1.5% weight. The saturation limit in water is 5.0% weight. This must be taken into account for these types of applications.

Vacuum

In vacuum, any present moisture is released as vapor. The use in vacuum is only possible to a limited extent.

Radiation resistance

Plain bearings made from iglide $^\circ$ Q2E are resistant up to a radiation intensity of 3 \cdot 10 2 Gy.

Resistance to weathering

iglide[®] Q2E plain bearings have not yet been tested for their resistance to weathering. Please consult igus[®] if you're planning to use them outdoors.

Mechanical properties

With increasing temperatures, the compressive strength of iglide® Q2E plain bearings decreases. Diagram 02 shows this inverse relationship. The maximum recommended surface pressure is a mechanical material parameter. No conclusions regarding the tribological properties can be drawn from this. Diagram 03 shows the elastic deformation of iglide® Q2E at radial loads.

Surface pressure, Page 50

Permissible surface speeds

Typical applications for iglide[®] Q2E plain bearings are pivoting movements under high loads at comparatively low speeds. However, relatively high speeds are still attainable. The speeds stated in table 03 are limit values for the lowest bearing loads. With higher loads, the permitted speed drops with the extent of the load due to the limitations by the pv value.

Surface speed, Page 44

Bearing technology | Plain bearing | iglide® Q2E

Temperature

iglide[®] Q2E is a very temperature-stable material. The long-term upper temperature limit of +212°F permits the broad use in applications typical for the agricultural, utility vehicle or construction equipment sectors. With increasing temperatures, the compressive strength of iglide® Q2E plain bearings decreases. For temperatures over +167°F an additional securing is required. When considering temperatures, the additional frictional heat in the bearing system must be taken into account.

- Application temperatures, Page 48
- Additional securing, Page 48

Friction and wear

The coefficient of friction alters similarly to the wear resistance with increasing load and surface speed (diagrams 04 and 05).

- Coefficient of friction and surfaces, Page 47
- Wear resistance, Page 50

Resistance
+
0 up to –
+
+
+
+
-
0

All information given at room temperature [+68°F] Table 02: Chemical resistance

Chemical table, Page 1762

Installation tolerances

iglide® Q2E plain bearings are standard bearings for shafts with h tolerance (recommended minimum h9). The bearings are designed for press-fit into a housing machined to a H7 tolerance. The tolerances are based on class E11. After installing in a nominal size housing, the inner diameter of the bearings is adjusted according to the specifications in the product range.

- Testing methods, Page 57
- Tolerance table, Page 58

For Inch Size Bearings					
Length Tol	erance (b1)				
Length (inches)	Tolerance (h13) (inches)	Length of Chamfer (f) Based on d1			
0.1181 to 0.2362	-0.0000 /-0.0071	f = .012 → d ₁ .040"236"			
0.2362 to 0.3937	-0.0000 /-0.0087	$f = .019 \rightarrow d_1 > .236"472"$			
0.3937 to 0.7086	-0.0000 /-0.0106	$f = .031 \rightarrow d_1 > .472" - 1.18"$			
0.7086 to 1.1811	-0.0000 /-0.0130	$f = .047 \rightarrow d_1 > 1.18$ "			
1.1811 to 1.9685	-0.0000 /-0.0154	-			
1.9685 to 3.1496	-0.0000 /-0.0181				

Shaft materials

In high load applications, we generally recommend the use of hardened shafts. Furthermore, even at low to medium loads, iglide® Q2E will attain increased service life with "hard" shafts as compared to "soft" shafts. But for low load applications, the results are outstanding with free cutting steel as well. For high loads, the wear in pivoting applications is much lower than for rotation. If the shaft material you plan on using is not shown in these test results, please contact us. Shaft materials, Page 52

		Rotating	Oscillating	linear
long-term	fpm	197	138	787
short-term	fpm	394	276	984

Table 03: Maximum surface speeds

	Dry	Greases	Oil	Water
Coefficient of friction $\boldsymbol{\mu}$	0.22 – 0.42	0.09	0.04	0.04

Table 04: Coefficient of friction against steel (Ra = 1µm, 50HRC)

	Hou	sing	Plain b	earing	Sh	aft
Ø d1 [mm]	H7 [mm]	E11	[mm]	h9 [mm]
0-3	+0.000	+0.010	+0.014	+0.074	-0.025	+0.000
> 3 - 6	+0.000	+0.012	+0.020	+0.095	-0.030	+0.000
> 6 - 10	+0.000	+0.015	+0.025	+0.115	-0.036	+0.000
> 10 - 18	+0.000	+0.018	+0.032	+0.142	-0.043	+0.000
> 18 - 30	+0.000	+0.021	+0.040	+0.170	-0.052	+0.000
> 30 - 50	+0.000	+0.025	+0.050	+0.210	-0.062	+0.000
> 50 - 80	+0.000	+0.030	+0.060	+0.250	-0.074	+0.000
> 80 - 120	+0.000	+0.035	+0.072	+0.292	-0.087	+0.000
> 120 - 180	+0.000	+0.040	+0.085	+0.335	-0.100	+0.000

Table 05: Important metric tolerances for plain bearings according to ISO 3547-1 after press-fit

For Metric Size Bearings					
Length To	lerance (b1)				
Length (mm)	Tolerance (h13) (mm)	Length of Chamfer (f) Based on d1			
1 to 3	-0 /-140	$f = 0.3 \rightarrow d_1 1 - 6 mm$			
> 3 to 6	-0 /-180	$f = 0.5 \rightarrow d_1 > 6 - 12 \text{ mm}$			
> 6 to 10	-0 /-220	$f = 0.8 \rightarrow d_1 > 12 - 30 \text{ mm}$			
>10 to 18	-0 /-270	$f = 1.2 \rightarrow d_1 > 30 \text{ mm}$			
>18 to 30	-0 /-330				
>30 to 50	-0 /-390				
>50 to 80	-0 /-460				

Technical data

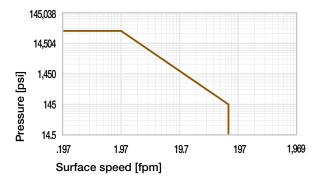


Diagram 01: Permissible pv values for iglide[®] Q2E plain bearings with a wall thickness of 1mm, dry operation against a steel shaft, at +68°F, mounted in a steel housing

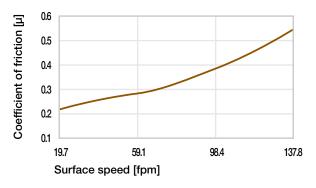


Diagram 02: Coefficient of friction as a function of the surface speed, p = 108psi

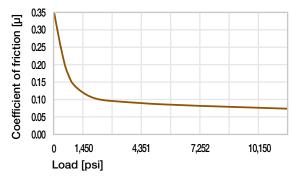


Diagram 03: Coefficient of friction as a function of the pressure, v = 1.97 fpm



Diagram 04: Wear, pivoting with different shaft materials, pressure p = 145psi, v = 59fpm

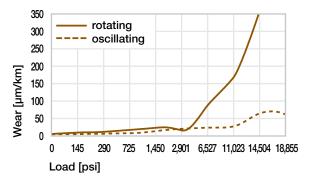
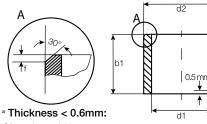


Diagram 05: Wear for oscillating and rotating applications with shaft material case hardened and ground steel, as a function of the load



iglide® Q2E

Bearing technology | Plain bearing | iglide® Q2E

Sleeve bearing (form S), inch

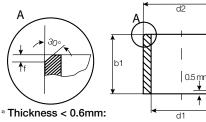
Chamfer = 20°

For tolerance values, page 556

Order key Q2E S -1216-16 I Outer Ø d2 (inch) Inner Ø d1 (inch) Length b1 (inch) (sleeve) iglide[®] material Form S (nch

*Based on steel
housing bore

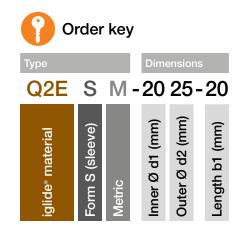
	Chamfer in	relation to d1			
el	d1 [inch]	Ø .040236	Ø >.236472	Ø>.472-1.18	Ø > 1.18
	f [inch]	.012	.019	.031	.047


Part Number	d1	d2	b1	I.D. After	Pressfit*	Housin	g Bore	Shaf	t Size
			h13	Min.	Max.	Min.	Max.	Min.	Max.
Q2ESI-1216-16	3/4	1	1	0.7516	0.7569	1.0000	1.0008	0.7480	0.7500
Q2ESI-1620-16	1	1 1/4	1	1.0016	1.0069	1.2500	1.2510	0.9980	1.0000
Q2ESI-2024-16	1 1/4	1 1/2	1	1.2520	1.2579	1.5000	1.5010	1.2476	1.2500
Q2ESI-2428-16	1 1/2	1 3/4	1	1.5020	1.5079	1.7500	1.7510	1.4976	1.5000
Q2ESI-3236-16	2	2 1/4	1	2.0024	2.0091	2.2500	2.2510	1.9971	2.0000
Q2ESI-4044-16	2 1/2	2 3/4	1	2.5024	2.5091	2.7500	2.7510	2.4971	2.5000

Bearing technology | Plain bearing | iglide® Q2E

Sleeve bearing (form S), metric

Chamfer = 20°

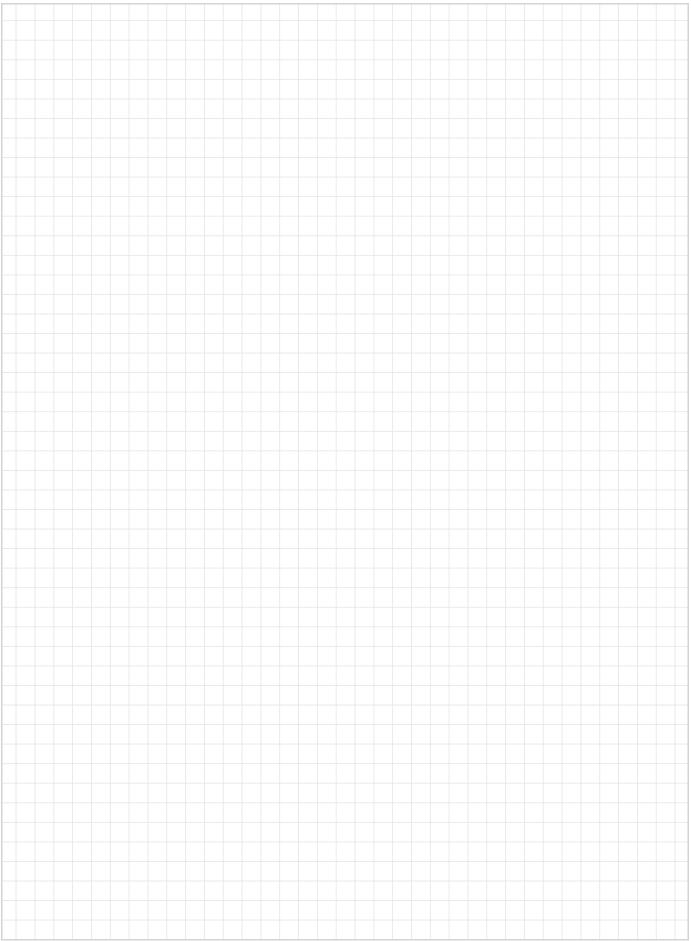

9	Dimensions according to ISO
	3547-1 and special dimensions

*Based on steel housing bore

Chamfer in relation to d1 d1 [mm] Ø 1-6 Ø >6-12 Ø >12-30 $\emptyset > 30$ f [mm] 0.3 0.5 0.8 1.2

For tolerance values, page 556

≜



iglide®

Q2E

Part Number	d1	d2	b1	I.D. After Pressfit*		Housing Bore		Shaft Size	
			h13	Min.	Max.	Min.	Max.	Min.	Max.
Q2ESM-2025-20	20.0	25.0	20.0	20.040	20.164	25.000	25.021	19.948	20.000
Q2ESM-2530-30	25.0	30.0	30.0	25.040	25.164	30.000	30.021	24.948	25.000
Q2ESM-3035-30	30.0	35.0	30.0	30.050	30.190	35.000	35.025	29.948	30.000
Q2ESM-3540-40	35.0	40.0	40.0	35.050	35.190	40.000	40.025	34.938	35.000
Q2ESM-4045-40	40.0	45.0	40.0	40.050	40.190	45.000	45.025	39.938	40.000
Q2ESM-4550-50	45.0	50.0	50.0	45.050	45.190	50.000	50.025	44.938	45.000
Q2ESM-5055-50	50.0	55.0	50.0	50.060	50.220	55.000	55.030	49.938	50.000
Q2ESM-6065-60	60.0	65.0	60.0	60.060	60.220	65.000	65.030	59.926	60.000

Notes

